Skip to main content

N,N'-Alkane-diyl-bis-3-picoliniums as nicotinic receptor antagonists: inhibition of nicotine-evoked dopamine release and hyperactivity.

Author
Abstract
:

The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.

Year of Publication
:
2008
Journal
:
The Journal of pharmacology and experimental therapeutics
Volume
:
326
Issue
:
2
Number of Pages
:
563-76
ISSN Number
:
0022-3565
URL
:
https://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=18460644
DOI
:
10.1124/jpet.108.136630
Short Title
:
J Pharmacol Exp Ther
Download citation